Exploiting kernel-based feature weighting and instance clustering to transfer knowledge across domains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting kernel-based feature weighting and instance clustering to transfer knowledge across domains

Learning invariant features across domains is of vital importance to unsupervised domain adaptation, where classifiers trained on the training examples (source domain) need to adapt to a different set of test examples (target domain) in which no labeled examples are available. In this paper, we propose a novel approach to find the invariant features in the original space and transfer the knowle...

متن کامل

Feature Weighting Method Based On Instance Correlation Using Discretization

In Machine Learning Process, several issues arise in identifying a suitable and quality set of features from which a classification model for a particular domain to be constructed. This paper addresses the problem of feature selection for machine learning through discretization approach. RELIEF is considered to be one of the most successful algorithms for assessing the quality of features. RELI...

متن کامل

Mercer kernel-based clustering in feature space

The article presents a method for both the unsupervised partitioning of a sample of data and the estimation of the possible number of inherent clusters which generate the data. This work exploits the notion that performing a nonlinear data transformation into some high dimensional feature space increases the probability of the linear separability of the patterns within the transformed space and...

متن کامل

Feature Weighting and Instance Selection for Collaborative Filtering

Collaborative filtering uses a database about consumers’ preferences to make personal product recommendations and is achieving widespread success in E-Commerce nowadays. In this paper, we present several feature-weighting methods to improve the accuracy of collaborative filtering algorithms. Furthermore, we propose to reduce the training data set by selecting only highly relevant instances. We ...

متن کامل

A Co-evolutionary Framework for Nearest Neighbor Enhancement: Combining Instance and Feature Weighting with Instance Selection

The nearest neighbor rule is one of the most representative methods in data mining. In recent years, a great amount of proposals have arisen for improving its performance. Among them, instance selection is highlighted due to its capabilities for improving the accuracy of the classifier and its efficiency simultaneously, by editing noise and reducing considerably the size of the training set. It...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES

سال: 2017

ISSN: 1300-0632,1303-6203

DOI: 10.3906/elk-1503-245